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OBJECTIVES 

To carry out fundamental and wide ranging research investigations involving the nonlin- 

ear wave propagation that arises in physically significant systems. Application areas include 

studies in nonlinear optics, solutions of multidimensional nonlinear equations, inverse scat- 

tering, nonlinear wave dynamics in magnetics films, computationally induced chaos and 

chaotic dynamics in physical systems. 

STATUS OF EFFORT 

The research program of the PI in the field of nonlinear wave propagation continues to 

be very active. There have been a number of important research contributions during the 

past three years. During the period January 1, 1997 - December 31, 1999, 15 papers were 

published or accepted for publication in refereed journals, 5 book chapters were published 

or accepted, 5 conference proceedings were published or accepted, 2 preprints were written 

and 21 invited lectures were given. 

Research investigations in nonlinear optics were varied. In quadratically nonlinear optical 

media (so called x'2^ materials) we have derived multidimensional equations governing the 

asymptotic evolution of quasi-monochromatic optical pulses. The equations obtained are of 

nonlinear Schrödinger type with coupling to a mean field; we find either scalar or vector 

systems depending on the polarization. In the scalar case numerical simulations indicate 

that stable localized waves can result.   Soliton interactions in fiber optics, including the 
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implications regarding four wave mixing and timing jitter on communications systems were 

studied. Novel nonlocal nonlinear Schrödinger (NLS) type equations governing dispersion 

managed soliton systems in fiber optics were obtained. 

The Pis studies of vector discrete NLS systems have been motivated by recent experimen- 

tal research on discrete optical waveguides. New classes of vector discrete soliton systems, 

some of which are integrable by the inverse scattering transform have been obtained. The 

scattering problem has intrinsic interest in its own right. 

A new class of lump type solutions of the multidimensional Kadomtsev-Petviashvili (KP) 

equation and associated eigenfunctions of the nonstationary Schrödinger scattering problem 

were found. These lump type solutions decay in all directions and exhibit unusual scattering 

behavior unlike previously known cases. These solutions of the KP equation, which are 

also "refiectionless potentials" of the nonstationary Schrödinger equation, are characterized 

by an underlying integer which plays the role of an index or winding number. Given the 

importance of the KP and the nonstationary Schrödinger equations, this result has important 

implications in physics and inverse scattering. 

Research on nonlinear waves in thin magnetic films was carried out. For those one 

dimensional wave propagation problems which model laboratory experiments, the governing 

NLS equations have been derived, and the coefficients have been deduced from first principles. 

Extensions to multidimensions along the lines of x^ nonlinear optics is being studied. There 

is considerable experimental interest in the dynamics of multidimensional pulses in these 

magnetic systems. 

Research involving the study of computationally induced chaos in discrete'systems related, 

to the NLS and the sine-Gordon equation continues. As part of this research, comparisons be- 

tween symplectic integrators and "off the shelf" adaptive Runge-Kutta (RK) algorithms were . 

made. Unlike low dimensional dynamical systems our numerical studies of high dimensional 

Hamiltonian wave systems indicate little error improvement when symplectic algorithms 

were employed instead of adaptive RK algorithms. 

Research studies of computational chaos have indicated novel ways in which high di- 

mensional chaotic dynamics can be induced in physical systems governed by perturbed NLS 

equations. Recently, water wave experiments and associated theory involving slow modula- 

tions of the classical periodic Stokes water wave have delineated, for the first time, parameter 

regimes where chaotic dynamics is predicted and observed. Similar results can be expected 

for modulated nonlinear periodic waves in nonlinear optical media. This is a topic for future 

study. 



ACCOMPLISHMENTS/NEW FINDINGS 

Nonlinear Optics: Multi-dimensional pulse propagation in x^ optical materials 

Unlike fiber optics where the leading order nonlinear polarization effect is cubically non- 

linear, in many important optical applications the underlying leading order nonlinearity is 

quadratic (these are called "x^" materials). In our work [J-6] (this can be found in the 

section on publications of the PI) we found that in multidimensional nonresonant x^ mate- 

rials, the nonlinear equations governing the slowly varying envelope of quasi-monochromatic 

wave trains is not the NLS equation but rather a coupled nonlinear system involving both 

the optical field and mean terms. We call these equations NLSM systems (M stands for 

the mean contribution). In water waves analogous scalar systems were derived years ago 

by Benney and Roskes. A few years later, a special case of this system was found to be 

integrable. The latter system is often referred to as the Davey-Stewartson (DS) system. The 

results from these investigations have been useful in our studies. 

In the optical application, we derived both scalar and vector NLSM systems directly 

from Maxwell's equations. The vector NLSM systems generalize to multidimensions the 

well-known 1+1 vector NLS equations. To our knowledge, the vector multidimensional 

systems have no analog in water waves. For the scalar NLSM system we have been able to 

find localized optical pulse solutions. These localized pulses are induced by their interaction 

with mean terms that have nontrivial boundary values. Hence the localized pulses are 

boundary induced. This situation is similar to the situation that is known to occur for the 

Davey-Stewartson system, only in this case the system is unlikely to be integrable. In recent 

computations we have been able to find improved approximations to the underlying localized 

pulse with negligible radiation present. 

These findings suggest that stable localized multidimensional pulses are a generic feature 

of the NLSM type equations studied here. We believe that the above described dynamical 

configuration can be designed experimentally. This possibility is particularly interesting 

because such experiments could allow the production of stable localized multidimensional 

optical pulses whose dynamics can be electrically controlled by modification of the relevant 

d.c. fields. 

Potential applications include beam steering, pulse shaping terrahertz imaging and optical 

switching. 

Nonlinear Optics: Discrete optical wave systems and discrete inverse scattering 

Discrete soliton systems have been a long standing topic of interest in our research pro- 

gram. Years ago the PI obtained a discrete NLS equation which possesses solitons and can be 

solved by the inverse scattering transform (1ST). This system, called the integrable discrete 

NLS equation (IDNLS) has been found to apply in a number of physical contexts and is 



also often used to approximate the so called diagonally discrete NLS system (DDNLS). It is 

interesting that recent experimental research has confirmed theoretical predictions of the ex- 

istence of discrete optical solitons in coupled optical waveguides. The experimental situation 

appears to be closely described by the DDNLS eq. Our recent research investigations have 

shown that a class of vector discrete nonlinear systems have exact soliton solutions and pos- 

sess many of the features found in their continuous analog [J-10]. These systems also exhibit 

strong vector-polarization interaction effects. The equations we have been investigating are 

of the form: 

iuz + (u(n + 1) + u[n - 1) - 2u(n))/hr + (\u{n)\2 + a\v{n)\2){L{u(n)) = 0 

ivz + {v{n + 1) + v(n - 1) - 2v{n))/h2 + (a\u(n)\2 + \v(n)\2){L(v(n)) = 0 

where a) L(u(n)) — 2u(n) and b) L(u(n)) = u(n + 1) + u(n — 1). In the latter case (b) 

we have developed detailed analytical and numerical results and have obtained the complete 

solution by 1ST. For example we have obtained soliton solutions, conservation laws and we 

find wide regions of parameter space where large internal energy is transferred between the 

u and v components of a two soliton system. In the future we intend to analyze and compare 

both discrete systems in detail. The experimental work on scalar discrete systems suggests 

that the novel vector discrete systems of the types we are studying are physically relevant 

and may be potentially important for device applications such as optical switching. 

The scattering problem which applies to the 1ST of the scalar integrable system (the 2x2 

scattering problem) is of the form: 

V'ln+l = Win + <?ni/>2„ 

where qn, rn are the potentials and A is the eigenvalue. Recently we have analyzed the inverse 

scattering problem for matrix generalizations of arbitrary order of the above 2x2 system (the 

2x2 system applies to the scalar discrete NLS equation). In its own right the discrete inverse 

scattering system is interesting and is likely to have many applications. 

We note that the complex function methodology used in our studies of 1ST in continuous 

systems can be applied to discrete systems. We find that the scattering theory involves the 

formulation and solution of a RH problem on a unit circle. The spectral singularities (poles) 

of the scattering data correspond to solitons, and as a consequence, we have shown that the 

integrable vector discrete NLS equation has soliton solutions. 

Based on our studies of NLS and its discretizations we have also shown that the discrete 

coupled NLS system provides a useful discretization as a numerical scheme to solve the 

continuous vector NLS equation. These difference equations, as in the scalar problem, can 

be expected to provide reliable and effective numerical schemes. 



In the future we will study the interaction effects associated with integrable and noninte- 

grable, vector discrete systems. We wish to develop a detailed understanding of the internal 

energy transfer between transverse modes. 

Discrete solitons in optical waveguides have only recently been observed in experiment. 

The work described here is the vector extension of the equations governing discrete solitons 

with one polarization mode. Potential applications involve optical switching and specialized 

optical communications. 

Nonlinear Optics: Soliton communications in fiber optics: Wavelength Division 

Multiplexing 

The development of technologically feasible optical soliton communication systems capa- 

ble of high speed data transmission has been a major achievement in the field of nonlinear 

fiber optics. It is well-known that thin optical fibers can support localized pulse/soliton 

propagation in the anomalous-dispersion regime. Mathematically speaking, the nonlinear 

Schrödinger (NLS) equation with the addition of suitable perturbative terms, including 

damping, amplifiers, frequency filters and dispersion management, governs the propagation 

of such waves. The NLS equation supports multi-soliton solutions and it is these multi-soliton 

waves which offer significant technological enhancement. 

Single channel systems supporting single soliton waves are communication systems in 

which the solitons are widely separated and there is no possibility of mutual soliton inter- 

actions. Laboratory demonstrations have shown that single channel systems are' capable 

of transmitting information at relatively high data rates. However, in order^to significantly 

increase data rates as desired for future communication systems, multi-soliton based systems 

■ are being considered. Such systems are usually referred to as wavelength division multiplexed 

(WDM) systems. 

Our research in WDM systems was focused on the study of multisoliton propagation, their 

interaction properties and associated timing shifts. Our aim is to develop a comprehensive 

and effective analytical theory describing soliton interactions in both physical and frequency 

space. 

In our work we analyzed multisoliton interactions in ideal and realistic fibers, i.e. soliton 

interactions in the NLS equation with and without perturbative terms. In general, the 

formulae are complicated. However, in the limit of large frequency separation, there is 

a significant simplification, namely our analysis shows that solitons always remain widely 

separated in frequency space, even when they interact strongly in physical space. 

We discovered that: i) significant perturbations can be generated in a different frequency 

channel from the individual solitons; ii) the perturbations in the new frequency channel are 

located in specific frequency regimes; more precisely they are excited in the frequency regimes 

associated with four wave mixing interactions (FWM) contributions; iv) in an ideal fiber we 



show that as solitons interact, the FWM contributions grow from a zero background and 

then decay back to zero; v) the results demonstrate, however, that this is not the situation in 

realistic systems which include damping and amplification. The result is that FWM signals 

are greatly magnified; they grow and then saturate to become a nontrivial state. 

From a communications standpoint, such FWM contributions are undesirable. An im- 

portant research problem involves how to control/eliminate this phenomena. Our work 

indicates that optical fibers which employ suitable dispersion parameters (often referred to 

as dispersion managed fibers) can significantly reduce these undesirable FWM effects. 

Another serious problem in WDM solitön technologies is the effect of anomalous tim- 

ing displacements which are due to multi-soliton interactions. Timing displacements occur 

when perturbative terms such as damping, amplifiers and frequency filters are present. In 

recent work we have developed a theory capable of analyzing a wide range of perturbative 

contributions including damping, amplification and frequency filters. We have shown that 

in WDM systems the resulting natural collisions of solitons leads to variance in arrival times 

and hence multisoliton jitter. In our original work we only took into account damping and 

amplification [J-5]. Subsequently, we added filters and dispersion variation following the 

loss profile [J-7]. Both filters as well as dispersion following the loss profile significantly 

reduce timing jitter. A statistical analysis also allows us to consider an arbitrary number 

of communication channels. Formulae for the mean square timing shift are derived. We 

have compared the mean square timing shift, with filters included, to the result without 

filters. It is found that filters decrease the mean square timing shift by about an order of 

magnitude over a distance of 10,000 km. The effect of dispersion management, following 

the loss profile, further decreases the timing jitter, and it allows for a significant increase in 

the number of error free communication channels. We also developed a notion of optimal 

dispersion managed systems which depend on certain suitable ratios of fibers with different 

dispersion characteristics. 

We' recently considered the effect of using lumped type filters and compared it with 

using the well known distributed filter approximation [cf. J-12]. In this work we show that 

the distributed approximation, obtained as a continuous limit of many lumped filters, is a 

good approximation for a wide range of parameters. Most researchers employ distributed 

approximations. To our knowledge, this work is the first detailed comparison of lumped vs. 

distributed models. 

In the future we shall consider large scale dispersion management by employing dispersion 

managed fibers with (asymptotically) large average positive and negative dispersion. It 

is believed that this will be even more effective at reducing timing jitter than dispersion 

following the loss profile. 



In recent work [J-8] we have derived a novel nonlocal nonlinear Schrödinger equation 

which governs the asymptotic dynamics of strong dispersion managed soliton communica- 

tion systems. Unlike the derivation of the usual NLS equation with moderate dispersion 

management, the leading order contribution has strong phase dependence. We find that in 

frequency space the leading order contribution separates into a product of a slowly vary- 

ing amplitude and a contribution with a rapidly varying phase—the latter can be found 

exactly. In physical space the corresponding representation is a convolution integral of a 

slowly varying amplitude and a term with a rapidly varying phase. 

We show that the amplitude satisfies a nonlocal NLS type equation where the linear terms 

are the same as the usual NLS equation, but the nonlinear terms are nonlocal. Using a novel 

iterative computational scheme, we have been able to solve these nonlocal equations and 

obtain their underlying solitary wave solutions. The solution is comprised of a Gaussian-like 

core with ä decaying tail that vanishes at the same exponential rate as the usual soliton 

of NLS. Comparison with well-known direct numerical simulations demonstrates remarkable 

agreement. Conserved quantities for the mass, momentum and the Hamiltonian of the system 

are obtained. We are currently extending this study to numerically solve the time dependent 

nonlocal NLS equation in order to study the interaction effects of these dispersion managed 

solitons. 

In the future we shall use the above mentioned nonlocal NLS type systems to understand 

and estimate potential reductions of four wave interaction effects as well as reductions in 

timing jitter. 

This work is important in the field of fiber optic communication since there is considerable 

interest in ultra fast data transmission. A major research direction in the communications 

field is wavelength division multiplexing, either via soliton or other technologies. 

New classes of lump type solutions in Multidimensional Nonlinear Wave Equa- 

tions 

In our earlier work on 2+1 multidimensional nonlinear wave equations we found an im- 

portant special class of solutions, namely two dimensional lumps which are solitons/coherent 

structures which decay in all directions. 

Recently we have found a new class of lump type solutions of the Kadomtsev-Petviashvili 

(KP) equation, which we call multipole lumps. Associated with the KP equation is a linear 

scattering problem which in this case is the nonstationary Schrödinger equation. Lump type 

solutions of the KP equations correspond to reflectionless potentials of the the nonstation- 

ary Schrödinger-problem. We have also found solutions of the nonstationary Schrödinger 

equation corresponding to these potentials. Given the importance of the nonstationary 

Schrödinger equation, this work has two equally important themes: solutions of the KP 

equation and solutions of the nonstationary Schrödinger equation. 



Spectrally speaking, these new coherent structure solutions correspond to multiple poles 

associated with certain eigenfunctions of the nonstationary Schrödinger problem. We have 

found that these solutions are characterized by an integer which is related to a winding 

number, or index. We call this number the charge: Q. 

The simplest example of a multipole lump is the following. In the the usual spectral 

description of, say, a one lump solution, the eigenfunction has one pair of poles symmetrically 

located in the upper/lower half planes. The charge associated with a simple lump is unity. 

Next let's consider a standard two lump solution. In this case, the eigenfunction has two 

pairs of poles symmetrically located in the upper/lower half planes. A two lump solution has 

an overall index of two obtained by simply adding the individual indices of each lump. We 

have shown, both by taking coalescing limits of (two) lump solutions and by direct analysis 

of the scattering problem, that the spectral configuration has a double pole in one of the 

half planes and a simple pole in the other. This new state has index two, which is consistent 

with the fact that in the limit process one cannot lose "charge". 

This process carries on to higher order multipole lumps. We have obtained a number of 

surprising results which we summarize below [see J-l, J-ll, J-13, B-3]. 

i) The multipole lump solutions are associated with an integer which is related to a wind- 

ing number. Thus we have found a new underlying index associated with the nonstationary 

Schrödinger problem. Simple lumps have charge = 1. We have found that higher order lump 

type solutions can have any integer charge. 

ii) The solutions of the nonstationary Schrödinger equation have multiple poles. The 

poles can have different orders in the upper/lower half planes. We call the order in the 

UHP/LHP as m/fn resp. Previously known solutions had only simple poles. 

iii) The solution manifold is characterized by the order of the poles of the nonstationary 

Schrödinger equation and the charge; i.e. m,m, Q. 

iv) The solutions associated with the Kadomtsev-Petviashvili equation have more com- 

plicated interaction properties than the previously known lump solutions. 

We are currently investigating whether all the the multipole lumps can be succinctly 

written in terms of the second logarithmic derivative of determinants of polynomials. We are 

also considering the lump solutions of other physically significant 2+1 dimensional equations 

such as the Davey Stewartson equation. 

This work is important for anyone studying scattering theory in multidimensions as well 

as nonlinear wave equations possessing multidimensional solitons. The underlying wave 

equations arise frequently in application as does the direct and inverse scattering problems. 



Nonlinear Waves in Ferromagnetic Films 

We have studied a class of nonlinear waves in ferromagnetic media. Motivation for these 

studies comes from experiments by Professor Carl Patton and his group in the Physics 

Department at Colorado State University. Patton's group has been investigating the gener- 

ation and evolution of soliton wave pulses in thin film ferromagnets. In these experiments, 

an yttrium iron garnet (YIG) film is magnetized to saturation causing the dipoles of the 

ferromagnet to align. An external microwave signal is applied to the film. If the power is 

large enough, solitons are observed to form and propagate through the film. Our goal is to 

develop a comprehensive and effective theory governing the propagation of waves in such 

ferromagnetic media. We are motivated by the strong analogy that exists with nonlinear 

optics. 

In optics the nonlinearity arises from the fact that the polarization is a nonlinear function 

of the electromagnetic field. In the magnetic systems we have been studying the role of the 

polarization is played by the magnetization (M) and the electric field is replaced by the 

magnetic field (H). The nonlinear terms of the magnetic system are generated by a torque 

equation which describes the precession of dipoles in the magnetic media. This difference is 

important since the way the nonlinearity arises usually has a major effect on the amplitude 

equations (i.e. NLS type equations). The fact that we are modeling films means that we 

must consider three regions: two outside the film and the film itself. Outside the film we 

take the magnetostatic approximation of the vacuum Maxwell's equations; inside the film 

is where the torque equation is applied. This means that the way the amplitude equations 

are derived in a perturbation analysis is different from infinite media. In infinite media, or 

what is sometimes referred to as bulk media, the amplitude equations result from secularity 

conditions which require no unbounded growth at infinity. In the case of films the amplitude 

equations result from Fredholm solvability conditions on the underlying linear system which 

is found by matching the three wave regimes outside/inside the film. 

The calculations are extremely lengthy, but we obtained the nonlinear Schrödinger equa- 

tion that governs so called forward volume waves—where the applied magnetic field is ap- 

plied both perpendicular to the film and in the direction of propagation. Previously the NLS 

equation had only been derived in a heuristic manner. 

Computational and Effective Chaotic Dynamics 

a) Computational Chaos 

We are continuing our investigations involving the computational simulations of a class 

of nonlinear equations which are perturbations of equations that can be analyzed via the 

inverse scattering transform (1ST). To date we have studied a class of discrete equations 

which in the continuous limit are also approximations to the nonlinear Schrödinger, modified 

KdV and sine-Gordon equations (cf. J-2, J-4, J-15).  The underlying 1ST based equations 



are used as prototypes since they are physically interesting systems, about whose solutions 

and properties we have concrete analytical understanding. Computationally speaking the 

discrete equations we are studying provide a vehicle by which: i) computational schemes can 

be compared and ii) errors in the schemes can be detected. We have found that in certain 

circumstances computational temporally irregular/chaotic dynamics result. Since these are 

long time numerical integrations of nonlinear systems, there is no existing theory of error 

analysis which describes the phenomena. 

In our earlier work, we studied the computational chaos associated with the NLS equation 

with periodic boundary values. We found that the chaos could be excited by both truncation 

as well as roundoff errors. It will be noted below that the chaotic dynamics we have observed 

is also a physical phenomena recently observed in laboratory experiments. Thus, for example, 

the NLS equation is known to govern the modulation of water waves in moderate-deep water 

and modulational instability in nonlinear optics. When the waves are. excited in a periodic 

manner with small modulation, then the NLS equation with periodic boundary values is the 

relevant leading order equation governing the physical problem. 

With appropriate parameters, the simplest periodically generated waves of the NLS equa- 

tion are modulationally unstable with M unstable modes of the linearized version of the NLS 

equation. The NLS with small perturbations, due to the discretization, governs the long time 

evolution. Thus the problem amounts to understanding the long time dynamics of the NLS 

equation under small perturbations, be they computationally induced, in this case, or phys- 

ically induced, as discussed below. 
Our computational results, based on extensive numerical and analytical results, indicate 

that depending on the parameters of the system, there is a significant difference in the long 

time dynamics depending on whether the perturbations induce evolution close to homoclinic 

manifolds. Evolution near to homoclinic manifolds indicates that the NLS equation is itself 

highly unstable in much the same way as are coupled pendula nearly in the "up-position". 

Thus small perturbations due to numerical errors—or physical perturbations—are capable 

of causing serious temporal irregularities/dynamical chaotic dynamics in the evolution. 

Our computational results, and associated analytical results, show that, for typical pa- 

rameter regimes, there can significant differences in the long time dynamics depending on 

whether one excites a small number of unstable modes M (e.g. M=l) or a larger number (e.g. 

M=3-5). In the former case (M=l), the dynamical evolution should be nonchaotic, explain- 

able and repeatable, in the context of pure NLS theory. In the latter situation (M=3-5), the 

small perturbations can induce chaotic dynamics. It turns out that the number of unstable 

modes, M, is the same as the order of the homoclinic manifold. The larger M is, the more 

likely we are to evolve nearby a homoclinic manifold and execute a homoclinic transition. 
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Depending on values of the parameters, we have shown that: 

a) Computational chaos can result from truncation errors. 

b) For suitably large values of M we have demonstrated that the numerical chaos can 

even be induced by roundoff errors. 

c) For even initial data the phase space is foliated and the chaos is explained by continual 

and temporally irregular crossings of unperturbed homoclinic manifolds (i.e. crossing of the 

NLS homoclinic manifolds). 

d) When the initial data is not even, the phase space is no longer foliated and the 

solution to the perturbed NLS system can evolve from one "side" of the homoclinic manifold 

to another without crossing an unperturbed homoclinic manifold. We refer to this situation 

as a homoclinic transition. The dynamics we have observed in the latter case is depicted by 

irregular and continual changes of the velocity of the underlying periodic waves. The case 

of even initial data is typified by the periodic waves being essentially standing waves (no 

left/right velocity). 

e) The situation when the initial data is not even, or the perturbation is not even, is the 

generic case. Our recent work on water waves has shown that the homoclinic transitions ob- 

served in part d) actually occur, but during the time scales we consider, homoclinic crossings 

like those in part c) above do not occur. 

We have also studied the sine-Gordon equation with periodic initial values. Again we 

find that numerical discretizations of the equation can. lead to chaotic dynamics. We have 

compared a range of numerical schemes based upon their ability to preserve the underly- 

ing spectrum of the associated scattering problem which is used to solve the sine-Gordon 

equation. We found that the spatial discretization plays a more important role than the tem- 

poral scheme with different spatial discretizations yielding significantly different results. We 

have found that pseudo-spectral discretizations are far superior to standard finite difference 

simulations. 

Surprisingly we find "off the shelf adaptive Runge-Kutta (RK) type algorithms (from the 

NAG software routines) perform as well as symplectic integrators. The symplectic integrators 

performed better when they were higher order, with fourth order symplectic algorithms 

performing about as well as RK algorithms. This calls into question whether symplectic 

integrators are as useful for the integration of Hamiltonian PDEs as many of its supporters 

had hoped. 

We are continuing our studies of computational chaos related to physically significant 

equations and comparisons of symplectic integrator's with standard algorithms, e.g. Runge- 

Kutta algorithms in wider parameter regimes. We believe continuing these studies is im- 

portant in order for researchers to understand whether these relatively new simplectic based 

numerical methods are as useful for Hamiltonian PDEs as they are for finite (low) dimen- 
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sional dynamical systems. 

b) Chaotic dynamics in nonlinear wave systems 

As mentioned above our research has suggested that the underlying dynamics leading to 

computational chaos could also be a manifestation of a physical effect potentially observable 

in laboratory experiments. For example, the NLS equation is known to govern the slow 

modulation of water waves in moderate-deep water and modulational instability in nonlinear 

optics. We began working with water wave experimentalists J. Hammack and D. Henderson 

at the Pennsylvania State University. 

Remarkably, in their experiments, Hammack and Henderson have recently observed tem- 

porally irregular and chaotic dynamics of water waves in a modulational unstable regime. 

In their laboratory investigations carefully controlled modulated waves (using state of the 

art equipment) are excited by a paddle in a periodic manner at the entrance of the tank. 

Measurements are taken at downstream locations. The data received are then compared 

with identical experiments conducted at subsequent times. It is found that there are serious 

discrepancies between the data sets at downstream positions; the discrepancies are magni- 

fied as one proceeds downstream. We have worked closely with Hammack and Henderson in 

order to develop an analytical/numerical framework in order to explain the phenomena. 

We have found that the NLS equation with suitable small higher order corrections and 

periodic boundary data is the relevant equation. We call this the PNLS equation (P stands 

for perturbed). 

As indicated above, the NLS equation has a simple periodic solution which.is modulation- 

ally unstable. This instability corresponds to the well-known Benjamin-Feir modulational 

instability of deep water waves. Based on initial conditions there will be a number (which we 

call M) of unstable modes of the unperturbed NLS equation. The PNLS equation is used as 

the model governing the long time evolution. Hammack and Henderson have observed that, 

when there are M=3 unstable modes, the experiment is nonrepeatable. But, when they use 

solitons äs initial data, the experiments are repeatable. Earlier experiments have primarily 

dealt with solitons. Our results based on direct numerical simulations of the PNLS equation 

and associated numerical integration of the spectrum of the scattering problem associated 

with the NLS equation confirm the observations of Hammack and Henderson. We used their 

experimental data as initial conditions in our computations of PNLS and confirmed that they 

were in the M=3 regime. When we repeated the numerics with noise corresponding to the 

same order of laboratory noise, we find similar discrepancies as do Hammack and Henderson. 

The waveform was not repeatable. We found serious temporal irregularities and numerous 

homoclinic transitions in the spectral data. When we did the numerics for solitons, we do 

not find any difficulties—no temporal irregularities, and no spectral homoclinic transitions 

or homoclinic crossings. 
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Since the NLS equation is a universal asymptotic equation, this research is important for 

many other applications. We are continuing this work, and we will use it as a base to develop 

a related theory of chaotic dynamics associated with modulational instability in optics and 

magnetics. 
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